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Tau-functions as highest weight vectors forW1+∞ algebra
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Department of Mathematics and Informatics, Sofia University, 5 J Bourchier Blvd, Sofia 1126,
Bulgaria

Received 11 December 1995

Abstract. For eachr = (r1, r2, . . . , rN ) ∈ CN we construct a highest weight moduleMr

of the Lie algebraW1+∞. The highest weight vectors are specific tau-functions of theN th
Gelfand–Dickey hierarchy. We show that these modules are quasifinite and we give a complete
description of the reducible ones together with a formula for the singular vectors.

1. Introduction

The remarkable connection between the infinite-dimensional Lie algebras and the soliton
equations was noticed by Sato [24] and further developed by Dateet al in [7]. In particular
it was found that the Kac–Moody algebras and the Virasoro algebra (important for the
conformal field theory) play a substantial role in soliton theory (see [2, 26, 8], etc for more
details). We would only mention the work of several authors (see [21, 22, 29] and references
therein) where it was discovered that the partition function of 2D quantum gravity is a tau-
function for the KdV hierarchy and also satisfies the so-called Virasoro constraints. This
result can also be interpreted as a construction of a certain highest weight representation of
the Virasoro algebra. Later a whole class of representations of the Virasoro algebra in terms
of tau-functions was built in [14, 15]. Certain special functions like Airy or Bessel functions
and Hermite or Laguerre polynomials play an important role in all above-mentioned results.

The present paper deals with similar questions but for the Lie algebraW1+∞. This
algebra is the unique central extension of the Lie algebra of regular differential operators on
the circle [17]. In recent works (see e.g. references in [11, 3]) this algebra and its reductions
WN were found to play an important role in quantum field theory.W1+∞ is also the algebra
of the additional symmetries of the KP tau-functions [26]. The representation theory of
W1+∞ was recently initiated in [19, 11, 3], etc. In particular Kac and Radul isolated a class
of W1+∞-modules and classified them. These are graded modules with finite-dimensional
level spaces, called in [19] quasifinite.

In contrast to the general theory we are interested in concrete representations
connected to classical special functions—this time—Meijer’sG-functions (see [6, 23]). Our
construction uses a simple but beautiful idea of Kac and Schwarz [21]. We recall it briefly.
Each tau-function corresponds to a planeW from the Sato GrassmannianGr which can be
considered as an infinite wedge product|W 〉. Assume that an operatorA leaves the plane
W invariant. Then under the boson–fermion correspondenceσ the imageτW (t) = σ(|W 〉)
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is an eigenvector ofA in the (completed) bosonic Fock space. We takeA to beζ∂ζ (recall
that Gr is built from the space of formal Laurent series inζ ) and impose onW to be
invariant under the multiplication byζN (henceτW is a solution of theN th reduction of
KP hierarchy). These restrictions yield a compatibility condition, satisfied byW. Thus we
come to the other classical object—Meijer’s differential equation [6] (see (8) below) which
is connected to the above modules. In the last section of the paper we give explicit formulae
for the singular vectors in these modules and point out the embeddings among reducible
ones.

Although we consider that these representations have their own value, we have to point
out that our first motivation in their construction was the solution of the so-called bispectral
problem (see [9, 28, 13] and references therein). Starting with the highest weight vectors of
these modules we build broad classes of solutions of any rank to this problem (see [5] and
references therein). But what we find more important is that these modules provide a natural
representation-theoretic setting for many results in the bispectral problem including those
of [9]. In this way we exhibit a completely new area of applications of the crucial idea of
Sato: the interplay between representation theory of infinite-dimensional Lie algebras and
soliton equations.

2. Preliminaries on W1+∞ and Sato’s Grassmannian

An adequate representation-theoretic model for the Dirac sea is the infinite wedge space
F = ⊕m∈ZF

(m), defined as follows [17, 18, 20]. LetV = ⊕j∈ZCvj be infinite-dimensional
vector space with basisvj . Then F (m) for m ∈ Z is the linear span of all semi-infinite
monomials

vi0 ∧ vi1 ∧ vi2 ∧ . . .
such thati0 > i1 > · · · and ik = m − k for k � 0. The free fermions can be realized as
wedging and contracting operators:

ψ−j+ 1
2
(vi0 ∧ vi1 ∧ . . .) = vj ∧ vi0 ∧ vi1 ∧ . . .

ψ∗
j− 1

2
(vj ∧ vi0 ∧ vi1 ∧ . . .) = vi0 ∧ vi1 ∧ . . . .

The Lie algebragl∞ of all Z×Z matrices, having only a finite number of non-zero entries,
can be represented inF via

r(Eij ) = ψ−i+ 1
2
ψ∗
j− 1

2

(whereEijvk = δjkvi). We shall need, however, a larger Lie algebrag̃l∞ of Z×Z matrices
with a finite number of non-zero diagonals. The above representation does not make sense
for g̃l∞. It must be regularized and leads to a representation

r̂(Eij ) = :ψ−i+ 1
2
ψ∗
j− 1

2
: (1)

of a central extension̂gl∞ = g̃l∞ ⊕Cc with central chargec = 1 (as usual :ψµψ∗
ν : = ψµψ

∗
ν

for ν > 0 and= −ψ∗
ν ψµ for ν < 0 ). Introduce free fermionic fields

ψ(z) =
∑
j∈Z

ψj− 1
2
z−j ψ∗(z) =

∑
j∈Z

ψ∗
j− 1

2
z−j

andU(1) current

J (z) = :ψ∗(z)ψ(z): =
∑
n∈Z

Jnz
−n−1.
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The modesJn generate the Heisenberg algebra and eachF (m) is its irreducible representation
with chargem and central chargec = 1. This gives an isomorphism, known as the boson–
fermion correspondence (see e.g. [18, 20, 16])

σ :F → B = C[t1, t2, t3, . . . ;Q,Q−1] (2)

Jn = ∂

∂tn
J−n = ntn for n > 0 J0 = Q

∂

∂Q
. (3)

Introducing the states|m〉 = vm ∧ vm−1 ∧ vm−2 ∧ . . . and the operatorH(t) = −∑∞
k=1 tkJk,

we have for|ϕ〉 ∈ F
σ(|ϕ〉) =

∑
m∈Z

〈m|eH(t)|ϕ〉Qm.

Let

φ(z) = q̂ + J0 logz +
∑
n6=0

Jn
z−n

−n
be a scalar bosonic field with OPEφ(z1)φ(z2) ∼ log(z1 − z2), such that

J (z) = ∂φ(z) Qm = lim
z→0

:emφ(z):|0〉.
Then the fermionic fieldsψ(z), ψ∗(z) act onB via

ψ∗(z) = :eφ(z): ψ(z) = :e−φ(z):

(as usual :JnJm: = JnJm if m > n and= JmJn if m < n , :q̂J0: = :J0q̂: = q̂J0).

The Lie algebraW1+∞ = D̂ is the unique central extension of the Lie algebraD of
complex regular differential operators on the circle [17, 19]. Denoting byc the central
element ofW1+∞ we introduce a basis

c, J lk = W(−zk+l∂ lz) k ∈ Z l > 0

and another basis

c, Llk = W(−zkDl
z) k ∈ Z l > 0

whereDz ≡ D = z∂z. Here and further forA ∈ D we denote byW(A) the corresponding
element fromW1+∞. The commutator inW1+∞ can be written most conveniently by the
generating series [19]

[W(zkexD),W(zmeyD)](exm − eyk)W(zk+me(x+y)D)+ δk,−m
exm − eyk

1 − ex+y
c. (4)

If we fix the basisvj = z−j of V we can consider any operatorA ∈ D as an element of
g̃l∞. This gives an embeddingφ0: D ↪→ g̃l∞ which can be extended to an embedding [19]
φ̂0:W1+∞ ↪→ ĝl∞ with φ̂0(c) = c. Using (1) we obtain forc = 1 a free-field realization

W(A) = Resz=0 :ψ(z)Aψ∗(z):

for A ∈ D. Introducing the fields

J l(z) =
∑
k∈Z

J lkz
−k−l−1

we get

J l(z) = :(∂lψ∗)(z)ψ(z):

and we have a bosonic realization

J l(z) = :e−φ(z) ∂
l+1
z

l + 1
eφ(z):. (5)
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Later we shall need a slight modification of this realization. Letu(z) = u0 logz +∑
n6=0 un

z−n
−n be a constant series and replace in (5)φ(z) by φ(z)+u(z). ConsideringA ∈ D

in the basisvj = eu(z)z−j gives an embeddingφu: D ↪→ g̃l∞ (i.e. φu(A) = φ0(e−uAeu) )
and its extension̂φu:W1+∞ ↪→ ĝl∞ is

(r̂ ◦ φ̂u)J l(z) = :e−φ(z)−u(z) ∂
l+1
z

l + 1
eφ(z)+u(z):.

For example whenu(z) = s logz we obtain the embeddinĝφs from [19]:

φ̂s logz(W(z
kexD)) =

∑
j∈Z

ex(s−j)Ej−k,j − δk,0
esx − 1

ex − 1
c. (6)

Now we shall briefly recall the Plücker embedding of the Sato Grassmannian in the
projectivization of the infinite wedge space [18, 25]. Let

Ṽ =
{ ∑
k∈Z

akvk

∣∣∣∣ak = 0 for k � 0

}
be the space of formal series. The Sato GrassmannianGr consists of all subspacesW ⊂ Ṽ

which have an admissible basis

wk = vk +
∑
i>k

wikvk k = 0,−1,−2, . . .

(we consider only transversal subspaces).
Denote byF̃ and B̃ the formal completions ofF andB. Then to the planeW ∈ Gr

we associate a state|W 〉 ∈ F̃ (0) as follows:

|W 〉 = w0 ∧ w−1 ∧ w−2 ∧ . . . .
A change of admissible basis results in multiplication of|W 〉 by a nonzero constant. The
tau-function ofW is the image of|W 〉 under the boson–fermion correspondence:

τW (t) = σ(|W 〉) = 〈0|eH(t)|W 〉.
It is a formal power series int = (t1, t2, t3, . . .).

Finally, recall that the Baker (or wave) function ofW ∈ Gr is a formal series of the
form

ψW(x, z) = exz
(

1 +
∞∑
i=1

ai(x)z
−i

)
such that

w−k = ∂kxψW(x, z)|x=0 k = 0, 1, 2, . . .

is an admissible basis ofW whenvj = z−j . It is expressed by the tau-function via

ψW(x, z) = exz
τW (x − [z−1])

τW (x)
(7)

whereτW (x) = τW (x, 0, 0, . . .), [z−1] = (z−1, z−2/2, z−3/3, . . .).
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3. Generalized Bessel functions

Fix r ∈ CN and let

Pr(D) = (D − r1)(D − r2) · · · (D − rN).

Consider the differential equation

Pr(Dz)8(z) = z8(z). (8)

After the substitutionz = ζN , it becomes an equation inζ with two singular points: regular
at ζ = 0 and irregular of rank 1 atζ = ∞ (see e.g. [27]). For every sectorS with a centre
at ζ = ∞ and an angle less than 2π , it has a solution with asymptotics

8(z) ∼ 9r(ζ ) = ζ s(r)eNζ
(

1 +
∞∑
i=1

ai(r)ζ
−i

)
for |ζ | → ∞, ζ ∈ S, ζ = z1/N . (9)

The formal (divergent) series9r(ζ ) is uniquely determined by (8) and does not depend
on the sectorS. The other solutions of (8) are obtained by replacingζ by e2π ik/Nζ

(0 6 k 6 N − 1). We have

s(r) =
N∑
i=1

ri − N − 1

2
a0(r) = 1

a1(r) =
∑
i<j

rirj − N − 1

2N

( ∑
ri

)2

+ N2 − 1

24N

and allai(r) are symmetric polynomials inr1, . . . , rN .

Example 1.(i) When N = 2, r = (α/2,−α/2), x = 2z1/2, equation (8) becomes the
classical Bessel equation

x2∂2
x8+ x∂x8− (x2 + α2)8 = 0

and the solution with asymptotics (9) can be taken as the Bessel function of the third kind
Kα (see e.g. [6]).

(ii) For all N we can take8(z) = GN0
0N((−1)Nz|r) be the Meijer’sG-function (see

e.g. [6, 23]). Whenri − rj 6∈ Z for all i 6= j it can be expressed in terms of generalized
hypergeometric functions.

We shall need some elementary properties of9r(ζ ), which follow directly from (8).
They correspond to classical properties of Meijer’sG-function (see [6], section 5.3). Here
and further we denote byei the vector fromCN with 1 on theith place and 0’s elsewhere,
ande = 1

N

∑N
i=1 ei . Then we have

ζ s9r(ζ ) = 9r+se(ζ ) (10)

(Dz − ri)9r(ζ ) = 9r+ei (ζ ). (11)

4. Construction of highest weight modules

From now on we fixs ∈ C, N ∈ N and considerr ∈ CN such thats(r) = s. Recall that
z = ζN . We choose a basis inV

vk = eNζ ζ s−k k ∈ Z. (12)
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Then9r(ζ ) corresponds to the following element ofṼ :

w0 = 9r(ζ ) = v0 +
∞∑
i=1

ai(r)vi . (13)

We defineBessel’s plane[10] Wr ∈ Gr to be the unique plane, containing9r(ζ ) and
invariant underDz, and denote byτr its tau-function. By (11) we can construct an admissible
basis{w−k}k>0 of Wr as follows. Choose arbitrary vectorse(k) = ∑N

i=1 kiei with ki ∈ Z>0,∑N
i=1 ki = k and set

w−k = 9r+e(k) (ζ ) = v−k +
∑
i>0

ai(r + e(k))vi−k. (14)

The Baker function of the planeWr is

ψr(x, z) = e−Nζ
(
ζ

(
1 + x

N

))−s
9r

(
ζ

(
1 + x

N

))
. (15)

By (8) it follows thatWr is invariant under the operatorsz andDz, i.e.

zWr ⊂ Wr DzWr ⊂ Wr. (16)

The algebraW1+∞ is isomorphic to its subalgebra consisting of elements of degrees
divisible byN [12, 26]. The isomorphism is given explicitly by

πN :W(zkexDz) 7→ W(ζNke
x
N
Dζ )+ δk,0

(
1

1 − ex/N
− N

1 − ex

)
c

πN : c 7→ Nc.

(17)

Combining it with (5) we obtain a bosonic representationr̂s,N = r̂ ◦ φ̂Nζ+s logζ ◦πN of W1+∞
with central chargec = N. It is easy to see that

r̂s,N (W(z
kexDz)) = r̂(zkexDz)+ ck(x) (18)

where the action ofzkexDz is taken in the basis (12),ck(x) = 0 for k > 0 and

c0(x) = 1

1 − ex/N
− N

1 − ex
+ esx − 1

1 − ex
. (19)

Note that whenk 6= 0 in (18) r̂ can be replaced byr. From now on we shall consider only
this representation (s, N being fixed) and skip the symbolr̂s,N . Denote byMr the module
generated byτr.

Theorem 2.(i) τr is a highest weight vector with highest weightλr, i.e.

Llkτr = 0 for k > 0 Ll0τr = λr(L
l
0)τr. (20)

Here λr(L
l
0) are certain symmetric polynomials inr1, . . . , rN , for exampleλr(L

0
0) =∑N

i=1 ri , λr(L
1
0) = 1

2

∑N
i=1 r

2
i − 1

2

∑N
i=1 ri .

(ii) The moduleMr is quasifinite with characteristic polynomials

Pr,k(D) = Pr(D)Pr(D − 1) · · ·Pr(D − k + 1)

(k ∈ N), i.e. we have

W(z−kPr,k(Dz))τr = 0

andPr,k are polynomials of minimal degree with this property.
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Proof. By (8) and (16)Wr is invariant under the operatorszkDl
z for k, l > 0 and

z−kPr,k(Dz) = (z−1Pr(Dz))
k for k > 1. We use the result of [21] that forA ∈ g̃l∞,W ∈ Gr

AW ⊂ W iff r̂(A)τW = constant× τW

and the fact that

W(zkf (Dz)) = 1

k
[W(Dz),W(z

kf (Dz))]

for k 6= 0. The polynomialsλr(L
l
0) can be computed comparing the coefficient of|0〉 in

both sides of (20) and using (14) and (19).

Example 3.For N = 2 and r = (α/2,−α/2) the Virasoro modulesM∞
α introduced in

[15, 10] are reductions of the modulesMr (obtained by puttingt2 = t4 = t6 = · · · = 0).

To describeλr introduce, following Kac and Radul [19], the generating series

1λr
(x) = λr(W(−exDz)).

It is proved in [19] that for a quasifinite representation with first characteristic polynomial
Pr(D) the function

F(x) = (ex − 1)1λr
(x)+ c

satisfies the equation

Pr(∂x)F (x) = 0.

When all ri are distinct, it follows thatF(x) = ∑N
i=1 aie

rix . Because of symmetry
a1 = · · · = aN . Using the value ofλr(L

0
0) given by theorem 2 we geta1 = · · · = aN = 1.

But λr(L
l
0) are polynomials inr, thus we have proved:

Theorem 4.The generating series1λr
(x) is given by

1λr
(x) =

N∑
i=1

erix − 1

ex − 1
.

The irreducible module with such generating series is called in [11] a primitive module.
However, our modules are irreducible only whenri − rj 6∈ Z for i 6= j [19].

We shall show thatτr is characterized among all formal power series by the constraints
(20).

Proposition 5.There exists only one (up to a constant) formal power seriesτ in t1, t2, . . .
satisfying

J lkτ = 0 J l0τ = clτ (21)

for 0< k, 0 6 l 6 N − 1 and some constantscl .

Proof. (cf [1, 15]) After taking derivatives of (21) and lettingt1 = t2 = · · · = 0 one sees
inductively that all derivatives ofτ at t = 0 vanish, hence it is determined byτ(0).
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5. Embeddings of the modulesMr

Theorem 6.Let r ∈ CN, r1 − r2 = α ∈ Z>0. Then τr+e1−e2 is a singular vector in the
moduleMr and is given by the formula

τr+e1−e2 = W(A)τr + constant× τr (22)

where

A = −(α + 1)
z−1Pr(Dz)

Dz − r2

(
z−1Pr(Dz)

)α
. (23)

ThereforeMr+e1−e2 ↪→ Mr.

Proof. Because

L1
0|t1=x,t2=t3=···=0 = x +N

N
∂x + s(s − 1)

2N
+ 1 −N2

12N
,

(20) implies

τr(x) =
(

1 + x

N

)N
2

∑
r2
i +constant

(the inessential constant depends ons andN but not onr). For λ ∈ C we consider the
sumτλ(t) = τr(t)+ λτr+e1−e2(t) (cf [10]). Then (14) implies that

τλ(t) = σ((9r + λ9r+e1−e2) ∧9r+e1 ∧9r+e1+e(1) ∧ . . .)
is a tau-function. By (7) its Baker functionψλ(x, ζ ) is equal to

τr(x)ψr(x, ζ )+ λτr+e1−e2(x)ψr+e1−e2(x, ζ )

τr(x)+ λτr+e1−e2(x)
= ψr(x, ζ )+ λ(1 + x

N
)N(α+1)ψr+e1−e2(x, ζ )

1 + λ(1 + x
N
)N(α+1)

.

Using (15), (10), (11) and (8) it is easy to see that(
1 + x

N

)N(α+1)
ψr+e1−e2(x, ζ ) = e−Nζ ζ−sA(z,Dz)ζ

seNζψr(x, ζ ).

Therefore in the basis (12)

τλ(t) = σ((1 + λA)9r ∧ (1 + λA)9r+e(1) ∧ (1 + λA)9r+e(2) ∧ . . .)
and comparing the coefficient ofλ gives

τr+e1−e2(t) = r(A)τr(t).

The formula (22) now follows from (18).

Theorem 6 gives in practice all possible embeddings among the modulesMr.
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